International Journal of Analytical Chemistry (Jan 2021)

Analytical Quality by Design Approach of Reverse-Phase High-Performance Liquid Chromatography of Atorvastatin: Method Development, Optimization, Validation, and the Stability-Indicated Method

  • Nabil K. Alruwaili

DOI
https://doi.org/10.1155/2021/8833900
Journal volume & issue
Vol. 2021

Abstract

Read online

The use of analytical quality by design (AQbD) approach in the optimization of the high-performance liquid chromatography (RP-HPLC) method is a novel tool. Three factors and three levels of Box–Behnken statistical design (BBD) were used for method optimization and analysis of atorvastatin. The mobile phase (acetonitrile: water), flow rate (Rt), and UV wavelength were used as independent variables. Their effects were observed in the area of the chromatogram (AU), retention time (Rt, min), and tailing factor (%). The optimized HPLC condition was found as acetonitrile:water (50 : 50), flow rate (0.68 ml/min), and UV wave length (235 nm). It gives the retention time of 2.43 min with the linearity range of 5–30 μg/ml with a high regression value (r2 = 0.999). The method was found to be precise and accurate with low % RSD (<5%). The refrigeration stability indicated that atorvastatin was stable. The force degradation study showed that the atorvastatin was fully unstable in UV light and stable in 0.1 M basic condition. It concluded that this QbD optimized method is suitable for quantification of the atorvastatin from the formulation as well as pharmacokinetic parameters.