Mathematics (Mar 2022)
Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity
Abstract
In quantum and quantum-inspired machine learning, a key step is to embed the data in the quantum space known as Hilbert space. Studying quantum kernel function, which defines the distances among the samples in the Hilbert space, belongs to the fundamental topics in this direction. In this work, we propose a tunable quantum-inspired kernel function (QIKF) named rescaled logarithmic fidelity (RLF) and a non-parametric algorithm for the semi-supervised learning in the quantum space. The rescaling takes advantage of the non-linearity of the kernel to tune the mutual distances of samples in the Hilbert space, and meanwhile avoids the exponentially-small fidelities between quantum many-qubit states. Being non-parametric excludes the possible effects from the variational parameters, and evidently demonstrates the properties of the kernel itself. Our results on the hand-written digits (MNIST dataset) and movie reviews (IMDb dataset) support the validity of our method, by comparing with the standard fidelity as the QIKF as well as several well-known non-parametric algorithms (naive Bayes classifiers, k-nearest neighbors, and spectral clustering). High accuracy is demonstrated, particularly for the unsupervised case with no labeled samples and the few-shot cases with small numbers of labeled samples. With the visualizations by t-stochastic neighbor embedding, our results imply that the machine learning in the Hilbert space complies with the principles of maximal coding rate reduction, where the low-dimensional data exhibit within-class compressibility, between-class discrimination, and overall diversity. The proposed QIKF and semi-supervised algorithm can be further combined with the parametric models such as tensor networks, quantum circuits, and quantum neural networks.
Keywords