Journal of Electrochemical Science and Engineering (Dec 2014)

Electrochemical combustion of indigo at ternary oxide coated titanium anodes

  • María I. León,
  • Zaira G. Aguilar,
  • José L. Nava

DOI
https://doi.org/10.5599/jese.2014.0061
Journal volume & issue
Vol. 4, no. 4
pp. 247 – 258

Abstract

Read online

The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5) deposited on a Ti substrate (mesh) obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO) as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine) formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.