Catalysts (Jun 2022)

Evaluation of Fe<sup>2+</sup>/Peracetic Acid to Degrade Three Typical Refractory Pollutants of Textile Wastewater

  • Jiali Yu,
  • Shihu Shu,
  • Qiongfang Wang,
  • Naiyun Gao,
  • Yanping Zhu

DOI
https://doi.org/10.3390/catal12070684
Journal volume & issue
Vol. 12, no. 7
p. 684

Abstract

Read online

In this work, the degradation performance of Fe2+/PAA/H2O2 on three typical pollutants (reactive black 5, ANL, and PVA) in textile wastewater was investigated in comparison with Fe2+/H2O2. Therein, Fe2+/PAA/H2O2 had a high removal on RB5 (99%) mainly owing to the contribution of peroxyl radicals and/or Fe(IV). Fe2+/H2O2 showed a relatively high removal on PVA (28%) mainly resulting from ·OH. Fe2+/PAA/H2O2 and Fe2+/H2O2 showed comparative removals on ANL. Additionally, Fe2+/PAA/H2O2 was more sensitive to pH than Fe2+/H2O2. The coexisting anions (20–2000 mg/L) showed inhibition on their removals and followed an order of HCO3− > SO42− > Cl−. Humic acid (5 and 10 mg C/L) posed notable inhibition on their removals following an order of reactive black 5 (RB5) > ANL > PVA. In practical wastewater effluent, PVA removal was dramatically inhibited by 88%. Bioluminescent bacteria test results suggested that the toxicity of Fe2+/PAA/H2O2 treated systems was lower than that of Fe2+/H2O2. RB5 degradation had three possible pathways with the proposed mechanisms of hydroxylation, dehydrogenation, and demethylation. The results may favor the performance evaluation of Fe2+/PAA/H2O2 in the advanced treatment of textile wastewater.

Keywords