Proceedings (Jul 2019)
Comparative of Machine Learning Algorithms and Datasets to Classify Natural Coverage in the Cajas National Park (Ecuador) Based on GEOBIA Approach
Abstract
GEOBIA is an alternative to create and update land cover maps. In this work we assessed the combination of geographic datasets of the Cajas National Park (Ecuador) to detect which is the appropriate dataset-algorithm combination for the classification tasks in the Ecuadorian Andean region. The datasets included high resolution data as photogrammetric orthomosaic, DEM and derivated slope. These data were compared with free Sentinel imagery to classify natural land covers. We evaluated two aspects of the classification problem: the appropriate algorithm and the dataset combination. We evaluated SMO, C4.5 and Random Forest algorithms for the selection of attributes and classification of objects. The best results of kappa in the comparison of algorithms of classification were obtained with SMO (0.8182) and Random Forest (0.8117). In the evaluation of datasets the kappa values of the photogrammetry orthomosaic and the combination of Sentinel 1 and 2 have similar values using the C4.5 algorithm.
Keywords