GIScience & Remote Sensing (Dec 2024)

Cross-comparison of Landsat-8 and Landsat-9 data: a three-level approach based on underfly images

  • Hanqiu Xu,
  • Mengjie Ren,
  • Mengjing Lin

DOI
https://doi.org/10.1080/15481603.2024.2318071
Journal volume & issue
Vol. 61, no. 1

Abstract

Read online

ABSTRACTThe recently launched Landsat-9 has an important mission of working together with Landsat-8 to reduce the revisit period of Landsat Earth observations to eight days. This requires the data of Landsat-9 to be highly consistent with that of Landsat-8 to avoid bias caused by data inconsistency when the two satellites are simultaneously used. Therefore, this study evaluated the consistency of the surface reflectance (SR) and land surface temperature (LST) data between Landsat-8 and Landsat-9 based on five test sites from different parts of the world using synchronized underfly image pairs of both satellites. Previous cross-comparisons have demonstrated high consistency between the spectral bands of Landsat-8 and Landsat-9, with differences of around 1%. However, it is unclear whether this low deviation will be amplified in subsequent multiband calculations. It is also necessary to determine whether the difference is consistent across different land cover types. Therefore, this study used a three-level cross-comparison approach to specifically examine these concerns. Besides the commonly used band-by-band comparison, which served as the first-level comparison in this study, this approach included a second-level comparison based on the calculations of several indicators and a third-level comparison based on a composite index calculated from the indicators obtained in the second-level comparison. This three-level approach will examine whether the difference found in the first-level per-band comparison would change after the subsequent calculations in the second- and third-level comparisons. The Remote Sensing based Ecological Index (RSEI) was used for this approach because it is a composite index integrating four indicators. The results of this three-level comparison show that the first-level per-band comparison exhibited high consistency between the two satellites’ SR data, with an average absolute percent change (PC) of 1.88% and an average R2 of 0.957 across six bands in the five test sites. This deviation increased to 2.21% in the third-level composite index-based comparison, with R2 decreasing to 0.956. This indicates that after complex calculations, the deviation between the bands of the two satellites was amplified to some extent. However, when analyzing specific land cover types, notable differences emerged between the two satellites for the water category, with an average absolute PC ranging from 18% to 35% and an R2 of lower than 0.6. Additionally, there were also nearly 5% differences for the built-up land category, with an average R2 value of lower than 0.7. The comparison of LST data between both satellites also reveals that the Landsat-9 LST is on average 0.24°C lower than Landsat-8 LST across the five test areas but can be 0.58°C lower in built-up land-dominated areas and 0.42°C higher in desert environments. Overall, the SR and LST data between Landsat-8 and Landsat-9 are consistent. However, their performance varies depending on different land cover types. Caution is needed particularly for water-related research when utilizing both satellites simultaneously. Significant discrepancies may also arise in the areas characterized by deserts and built-up lands.

Keywords