Poultry Science (Nov 2023)

Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers

  • J.R. Teyssier,
  • P. Cozannet,
  • E. Greene,
  • S. Dridi,
  • S.J. Rochell

Journal volume & issue
Vol. 102, no. 11
p. 103048

Abstract

Read online

ABSTRACT: This experiment determined the effects of different HS models and pair-feeding (PF) on nutrient digestibility and markers of stress, inflammation, and metabolism in broilers. Birds (720 total) were allocated into 12 environmentally controlled chambers and reared under thermoneutral conditions until 20 d. Until 41 d birds were exposed to 4 treatments, including: thermoneutral at 24°C (TN-al), daily cyclic HS (12 h at 24 and 12 h at 35°C; cyHS), constant HS at 35°C (coHS), and PF birds maintained at 24°C and fed to equalize FI with coHS birds (TN-coPF). At d 41, ileal digesta were collected to determine nutrient apparent ileal digestibility (AID). Blood, liver, and breast tissues were collected from 8 birds per treatment to determine the mRNA expression of stress, inflammation, and metabolism markers. An additional 8 TN-al birds were sampled after acute HS exposure at 35°C for 4 h (aHS), and 8 cyHS birds were sampled either right before or 4 h after HS initiation. Data were analyzed by 1-way ANOVA and means were separated using Tukey's HSD test. Compared with TN-al birds, AID of nitrogen and ether extract were reduced in coHS birds, and both cyHS and coHS reduced (P < 0.05) AID of total essential amino acids. TNFα and SOD2 expression were increased (P < 0.05) under aHS, coHS, and TN-coPF conditions. IL6 and HSP70 were increased (P < 0.05) under coHS and aHS, respectively. Expression of lipogenic enzymes ACCα and FASN were reduced by coHS and TN-coPF, while coHS increased the lipolytic enzyme ATGL (P < 0.05). IGF1 was lowered in coHS birds, and p70S6K and MyoG were reduced under coHS and TN-coPF (P < 0.05). Interestingly, MuRF1 and MAFbx were increased (P < 0.05) under coHS only. Overall, these results indicate that coHS has a greater impact on nutrient digestibility and metabolism than aHS and cyHS. Interestingly, increased protein degradation during HS appears to be mostly driven by HS per se and not the reduced FI.

Keywords