Communications Biology (Dec 2024)
Exquisite selectivity of griselimycin extends to beta subunit of DNA polymerases from Gram-negative bacterial pathogens
Abstract
Abstract Griselimycin, a cyclic depsidecapeptide produced by Streptomyces griseus, is a promising lead inhibitor of the sliding clamp component of bacterial DNA polymerases (β-subunit of Escherichia coli DNA pol III). It was previously shown to inhibit the Mycobacterium tuberculosis β-clamp with remarkably high affinity and selectivity – the peptide lacks any interaction with the human sliding clamp. Here, we used a structural genomics approach to address the prospect of broader-spectrum inhibition, in particular of β-clamps from Gram-negative bacterial targets. Fifteen crystal structures of β-clamp orthologs were solved, most from Gram-negative bacteria, including eight cocrystal structures with griselimycin. The ensemble of structures samples widely diverse β-clamp architectures and reveals unique protein-ligand interactions with varying degrees of complementarity. Although griselimycin clearly co-evolved with Gram-positive β-clamps, binding affinity measurements demonstrate that the high selectivity observed previously extends to the Gram-negative orthologs, with K D values ranging from 7 to 496 nM for the wild-type orthologs considered. The collective results should aid future structure-guided development of peptide antibiotics against β-clamp proteins of a wide variety of bacterial targets.