Clinical Interventions in Aging (Jul 2016)

The imaging assessment and specific endograft design for the endovascular repair of ascending aortic dissection

  • Zhang Y,
  • Tang H,
  • Zhou J,
  • Liu Z,
  • Liu C,
  • Qiao T,
  • Zhou M

Journal volume & issue
Vol. Volume 11
pp. 933 – 940

Abstract

Read online

Yepeng Zhang,1 Hanfei Tang,1 JianPing Zhou,2 Zhao Liu,1 Changjian Liu,1 Tong Qiao,1 Min Zhou1 1Department of Vascular Surgery, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 2Department of General Surgery, Yixin People’s Hospital, Yixin, People’s Republic of China Background: Endovascular option has been proposed for a very limited and selected number of Stanford type A aortic dissection (TAAD) patients. We have performed a computed tomography (CT)-based TAAD study to explore appropriate endograft configurations for the ascending aortic pathology. Methods: TAAD patients treated with optimal CT scans were retrospectively reviewed, and their entry tears (ETs) were identified using three-dimensional and multiplanar reconstructions in an EndoSize workstation. After generating a centerline of flow, measurements, including numerous morphologic characteristics of anatomy, were evaluated and a selected subset of patients were determined to be suitable for endovascular treatments. Proximal diameter and distal diameter of endograft were selected based on diameters measured at the ET level and at the innominate artery (IA) level, with 10% oversizing with respect to the true lumen, but not exceeding the original aortic diameter. The length of the endograft was determined by the distance from the sinotubular junction to IA. Results: This study covered 126 TAAD patients with primary ET in ascending aorta, among which, according to the assumed criteria, 48 (38.1%) patients were deemed to be suitable for endovascular treatment. The diameters of ascending aorta from the sinotubular junction to the IA level presented a downward trend, and the proximal diameters differed significantly from distal diameters of the endograft for TAAD (39.9 versus 36.2 mm, P<0.01), implying that the conical endograft might be compatible with the ascending pathology. In the ascending aorta, lengths of the endograft should be 50, 60, 70, 80, and 90 mm in five (10.4%), 22 (45.9%), 13 (27.1%), six (12.5%), and two (4.2%) patients, respectively. Conclusion: In this selected number of Chinese patients, the suitability of endovascular repair has been demonstrated based on the CT imaging. Shorter, larger, and bare spring-free conical endografts were preferred in the ascending aortic pathology. Keywords: type A dissection, endovascular, endograft, design

Keywords