Translational Oncology (Oct 2018)
Diffusion-Weighted MRI Is Insensitive to Changes in the Tumor Microenvironment Induced by Antiangiogenic Therapy
Abstract
Antiangiogenic treatment (AAT) used in combination with radiation therapy or chemotherapy is a promising strategy for the treatment of several cancer diseases. The vascularity and oxygenation of tumors may be changed significantly by AAT, and consequently, a noninvasive method for monitoring AAT-induced changes in these microenvironmental parameters is needed. The purpose of this study was to evaluate the potential usefulness of diffusion-weighted magnetic resonance imaging (DW-MRI). DW-MRI was conducted with a Bruker Biospec 7.05-T scanner using four diffusion weightings and diffusion sensitization gradients in three orthogonal directions. Maps of the apparent diffusion coefficient (ADC) were calculated by using a monoexponential diffusion model. Two cervical carcinoma xenograft models (BK-12, HL-16) were treated with bevacizumab, and two pancreatic carcinoma xenograft models (BxPC-3, Panc-1) were treated with sunitinib. Pimonidazole and CD31 were used as markers of hypoxia and blood vessels, respectively, and fraction of hypoxic tissue (HFPim) and microvascular density (MVD) were quantified by analyzing immunohistochemical preparations. MVD decreased significantly after AAT in BK-12, HL-16, and BxPC-3 tumors, and this decrease was sufficiently large to cause a significant increase in HFPim in BK-12 and BxPC-3 tumors. The ADC maps of treated tumors and untreated control tumors were not significantly different in any of these three tumor models, suggesting that the AAT-induced microenvironmental changes were not detectable by DW-MRI. DW-MRI is insensitive to changes in tumor vascularity and oxygenation induced by bevacizumab or sunitinib treatment.