Energies (Jan 2024)

Energy Production in Microbial Fuel Cells (MFCs) during the Biological Treatment of Wastewater from Soilless Plant Cultivation

  • Artur Mielcarek,
  • Kamil Łukasz Bryszewski,
  • Karolina Kłobukowska,
  • Joanna Rodziewicz,
  • Wojciech Janczukowicz

DOI
https://doi.org/10.3390/en17030548
Journal volume & issue
Vol. 17, no. 3
p. 548

Abstract

Read online

The management of drainage water (DW), which is produced during the soilless cultivation of plants, requires a high energy input. At the same time, DW is characterized by a high electrolytic conductivity, a high redox potential, and is also stable and putrefaction-free. In the present study, the natural properties of drainage water and a biotreatment method employing an external organic substrate in the form of citric acid (C/N 1.0, 1.5, 2.0) were utilized for energy recovery by a microbial fuel cell (MFC). The cathode chamber served as a retention tank for DW with a carbon felt electrode fixed inside. In turn, a biological reactor with biomass attached to the filling in the form of carbon felt served as the anode chamber. The filling also played the role of an electrode. The chambers were combined by an ion exchange membrane, forming an H letter-shaped system. They were then connected in an external electrical circuit with a resistance of 1k Ω. The use of a flow-through system eliminated steps involving aeration and mixing of the chambers’ contents. Citric acid was found to be an efficient organic substrate. The voltage of the electric current increased from 44.34 ± 60.92 mV to 566.06 ± 2.47 mV for the organic substrate dose expressed by the C/N ratio ranging from 1.0 to 2.0. At the same time, the denitrification efficiency ranged from 51.47 ± 9.84 to 95.60 ± 1.99% and that of dephosphatation from 88.97 ± 2.41 to 90.48 ± 1.99% at C/N from 1.0 to 2.0. The conducted studies confirmed the possibility of recovering energy during the biological purification of drainage water in a biofilm reactor. The adopted solution only required the connection of electrodes and tanks with an ion-selective membrane. Further research should aim to biologically treat DW followed by identification of the feasibility of energy recovery by means of MFC.

Keywords