Remote Sensing (Sep 2024)

Reversal of the Spatiotemporal Patterns at the End of the Growing Season of Typical Steppe Vegetation in a Semi-Arid Region by Increased Precipitation

  • Erhua Liu,
  • Guangsheng Zhou,
  • Xiaomin Lv,
  • Xingyang Song

DOI
https://doi.org/10.3390/rs16183493
Journal volume & issue
Vol. 16, no. 18
p. 3493

Abstract

Read online

Vegetation phenology serves as a sensitive indicator of climate change. However, the mechanism of the hydrothermal role in vegetation phenology changes is still controversial. Utilizing the data on the Fraction of Absorbed Photosynthetically Active Radiation (FPAR) from MODIS and meteorological data, the study employed the dynamic threshold method to derive the end of the growing season (EOS). The research delved into the spatiotemporal patterns of the EOS for typical steppe vegetation in the semi-arid region of Inner Mongolia spanning the period from 2003 to 2022. Furthermore, the investigation scrutinized the response of EOS to temperature and precipitation dynamics. The results showed that (1) the dynamic threshold method exhibited robust performance in the EOS of typical steppe vegetation, with an optimal threshold of 45% and a Root Mean Square Error (RMSE) of 5.5 days (r = 0.81); (2) the spatiotemporal patterns of the EOS of typical steppe vegetation in the semi-arid region experienced a noteworthy reversal from 2003 to 2022; (3) the lag effects of precipitation and temperature on the EOS were found, and the lag time scales were mainly 1 month and 2 months. The increase in precipitation in August was the key reason for the reversal of the EOS, and satisfying the precipitation was a prerequisite for the temperature to delay the EOS. The study emphasizes the important role of water availability in regulating the response of the EOS to hydrothermal factors and highlights the utility and reliability of FPAR in monitoring the EOS of typical steppe vegetation.

Keywords