Biomedicines (Mar 2024)
Development of Cell Technologies Based on Dendritic Cells for Immunotherapy of Oncological Diseases
Abstract
Immunotherapy using dendritic cell-based vaccination is a natural approach using the capabilities and functions inherent in the patient’s immune system to eliminate tumor cells. The development of dendritic cell-based cell technologies evolved as the disorders of dendritic cell differentiation and function in cancer were studied; some of these functions are antigen presentation, priming of cytotoxic T-lymphocytes and induction of antigen-specific immune responses. At the initial stage of technology development, it was necessary to develop protocols for the in vitro generation of functionally mature dendritic cells that were capable of capturing tumor antigens and processing and presenting them in complex with MHC to T-lymphocytes. To achieve this, various forms of tumor-associated antigen delivery systems were tested, including lysates, tumor cell proteins (peptides), and DNA and RNA constructs, and it was shown that the use of DNA and RNA constructs was the most effective method, as it made it possible not only to deliver the most immunogenic epitopes of tumor-associated antigens to dendritic cells, but also to enhance their ability to induce antigen-specific cytotoxic T-lymphocytes. Currently, cell therapy based on dendritic cells is a modern basis for antigen-specific immunotherapy of cancer due to the simplicity of creating DNA and RNA constructs encoding information about both target tumor antigens and regulatory molecules. The potential development of cell technologies based on dendritic cells aims to obtain antigen-specific cytotoxic T-lymphocytes induced by dendritic cells, study their functional activity and develop cell-based therapy.
Keywords