Beilstein Journal of Nanotechnology (Nov 2016)

Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

  • Christoph Schreyvogel,
  • Vladimir Polyakov,
  • Sina Burk,
  • Helmut Fedder,
  • Andrej Denisenko,
  • Felipe Fávaro de Oliveira,
  • Ralf Wunderlich,
  • Jan Meijer,
  • Verena Zuerbig,
  • Jörg Wrachtrup,
  • Christoph E. Nebel

DOI
https://doi.org/10.3762/bjnano.7.165
Journal volume & issue
Vol. 7, no. 1
pp. 1727 – 1735

Abstract

Read online

In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres) in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV−) and a nuclear spin (of 15N or 13C for example) of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

Keywords