Journal of Crop Protection (Jun 2019)
The synergistic interactions of cellulase enzyme activities of Trichoderma species in colloidal cellulose bioconversion
Abstract
In this study the cellulytic activity of different species of Iranian Trichoderma isolates including Trichoderma harzianum (NAS-H101), T. aureoviride (NAS-AV106), T. pleuroticola (NAS-P109), T. longibrachiatum (NAS-L110), T. ghanens (NAS-K108), T. virens (NAS- Vi114), T. atroviride (NAS-A113) and T. atroviride (NAS-A112) was studied. The extracellular protein concentration of these isolates was determined by the dye binding method of Bradford. The molecular weight of cellulase enzymes was studied using SDS-PAGE. The lowest extracellular protein production was observed in NAS-K108. The highest Endo and Exo-glucanase activity were observed in NAS-L110 and NAS-A113, respectively. The SDS-PAGE profiles had several enzyme bands such as cellobiohydrolases, endoglucanases and β-glucosidases. The NAS-K108and NAS-P109 had both enzyme bands of CBH I and CBH II, but other isolates had only a sharp enzyme band correlated to CBH I or CBH II. The highest synergy was observed in FPase of NAS-A112, that contained a large amount of Cel 6A (CBH II) and a minor amount of Cel 7B (EG I). The results indicated that NAS-A113 overproduces cellulases, ß-glycosidase, and the extracellular enzymes, which suggest that this species might be utilized as a biological agent and or a source of enzymes for cellulose degradation in colloidal cellulose.