AIMS Mathematics (Jan 2024)
Derivatives and indefinite integrals of single valued neutrosophic functions
Abstract
With the continuous development of the fuzzy set theory, neutrosophic set theory can better solve uncertain, incomplete and inconsistent information. As a special subset of the neutrosophic set, the single-valued neutrosophic set has a significant advantage when the value expressing the degree of membership is a set of finite discrete numbers. Therefore, in this paper, we first discuss the change values of single-valued neutrosophic numbers when treating them as variables and classifying these change values with the help of basic operations. Second, the convergence of sequences of single-valued neutrosophic numbers are proposed based on subtraction and division operations. Further, we depict the concept of single-valued neutrosophic functions (SVNF) and study in detail their derivatives and differentials. Finally, we develop the two kinds of indefinite integrals of SVNF and give the relevant examples.
Keywords