Revista Brasileira de Computação Aplicada (Sep 2018)

Técnicas de mineração de dados: um estudo de caso da evasão no ensino superior do Instituto Federal do Maranhão

  • Tayná Costa Gonçalves,
  • Josenildo Costa da Silva,
  • Omar Andres Carmona Cortes

DOI
https://doi.org/10.5335/rbca.v10i3.8427
Journal volume & issue
Vol. 10, no. 3
pp. 11 – 20

Abstract

Read online

Este trabalho mostra que é possível extrair conhecimento útil de dados puros sobre os estudantes de graduação IFMA, de modo a tentar entender os problemas de evasão do referido instituto. Neste artigo, o conhecimento foi modelado como um classificador capaz de identificar quais alunos são os mais propensos a abandonar o curso. Foram usado três algoritmos: Naive Bayes, Support Vector Machine e J48. Assim, baseados no entendimento do problema é possível tomar medidas na tentativa de reduzir essa evasão, como por exemplo, tentar auxiliar o possível aluno evasor antes que isso aconteça, aumentando assim o número de estudantes que se formam.

Keywords