Antibiotics (Mar 2020)
Whole Genome Sequencing for the Analysis of Drug Resistant Strains of <i>Mycobacterium tuberculosis</i>: A Systematic Review for Bedaquiline and Delamanid
Abstract
Tuberculosis (TB) remains the deadliest Infectious disease worldwide, partially due to the increasing dissemination of multidrug and extensively drug-resistant (MDR/XDR) strains. Drug regimens containing the new anti-TB drugs bedaquiline (BDQ) and delamanid (DLM) appear as a last resort for the treatment of MDR or XDR-TB. Unfortunately, resistant cases to these drugs emerged just one year after their introduction in clinical practice. Early detection of resistant strains to BDQ and DLM is crucial to preserving the effectiveness of these drugs. Here, we present a systematic review aiming to define all available genotypic variants linked to different levels of resistance to BDQ and DLM that have been described through whole genomic sequencing (WGS) and the available drug susceptibility testing methods. During the review, we performed a thorough analysis of 18 articles. BDQ resistance was associated with genetic variants in Rv0678 and atpE, while mutations in pepQ were linked to a low-level of resistance for BDQ. For DLM, mutations in the genes ddn, fgd1, fbiA, and fbiC were found in phenotypically resistant cases, while all the mutations in fbiB were reported only in DLM-susceptible strains. Additionally, WGS analysis allowed the detection of heteroresistance to both drugs. In conclusion, we present a comprehensive panel of gene mutations linked to different levels of drug resistance to BDQ and DLM.
Keywords