آب و فاضلاب (Oct 2014)

Effect of Molasses on Phenol Removal Rate Using Pilot-Scale Anaerobic Reactors

  • Abdollah Dargahi,
  • Ali Almasi,
  • Mohammad Soltanian,
  • parisa Zarei,
  • Amir Hossein Hashemian,
  • Hafez Golestanifar

Journal volume & issue
Vol. 25, no. 4
pp. 2 – 12

Abstract

Read online

With the growing industrial and social development through time, toxic substances such as phenol and its derivatives are increasingly released into the environment from a variety of sources. The present study aims to investigate the effects of molasses on phenol removal. For this purpose, five pilot scale batch reactors (5 Erlenmeyer flasks equipped with the air and gas diffusion control system) were used in the laboratory scale. The volumes of the reactors were kept constant with a final volume content of 550 ml in each reactor. Phenol with a fixed concentration of 100 mg/l was tested under anaerobic conditions in each reactor in contact with beet molasses (organic matter used as the auxiliary substrate) with COD concentrations of 10000, 5000, 2000, 1000, and 500 mg/l over 5 retention times (10, 20, 30, 40, and 50 days). All the sampling and testing procedures wer e performed according to the standard methods. The results showed that in all the five experimental reactors, increasing retention time was accompanied by a continuous decline in initial phenol and COD concentrations. However, for each retention time, increasing COD concentration led to a decrease in COD removal efficiency such that increasing the initial COD concentration up to a certain level was associated with an increase in chemical oxygen demanding materials, but beyond this range, COD removal decreased slowly. It was also found that phenol removal increased with increasing retention time but it was not proportional to the concentration of the biodegradable COD. After 50 days of contact with 1000 mg/l of the supporting substrate, phenol removal in the reactors reached 98.62%. Another finding of the study was the fact that the highest phenol removal was achieved when 1000-2000 mg/l of biodegradable COD was used over 50 days of retention time

Keywords