Batteries (May 2023)
Effectively Elevating Ceramic Fillers’ Dispersity in Gel Hybrid Electrolyte through Bridge–Linked Construction for High–Performance Lithium Metal Batteries
Abstract
Gel polymer-ceramic hybrid electrolytes (GHEs) have emerged as desirable candidates for preparing high energy density and excellent practicability gel batteries. However, the agglomeration of ceramic particles in polymer matrix leads to a decrease in cycling stability and low mechanical properties of GHEs. Here, we present a feasible method for improving the dispersity of Li0.24La0.59TiO3 (LLTO) nanorods in the polyvinylidenefluoride (PVDF)/poly(propylene carbonate) (PPC) co-blended matrix (K–LLTO/PVDF/PPC) by γ-(2,3-epoxypropoxy)propytrimethoxysilane (KH560) surface treatment. The as-prepared GHE with 10% K–LLTO filler (10% GHE) exhibits a high ionic conductivity (3.01 mS cm−1) and an appropriate lithium-ion transference number (0.55). The Li|10% GHE|Li symmetric cell shows an exceptional lithium stripping-plating lifetime of > 2000 h at 0.1 mA cm−2. The assembled LiFePO4 (LFP)|10% GHE|Li full cells show satisfactory cycling stability in the 2.5–4.2 V electrochemical window by recovering 84% of the initial capacity at 2 C over 500 cycles. The uniformly dispersed K–LLTO within the polymer matrix is ascribed to the formation of a bridge-linked network via Si–O–Ti bonds between KH560 and LLTO, and plenty of hydrogen bonds within the polymer matrix. This modification method provides a feasible strategy for fabricating GHEs with good repeatability, which may easily adapt to the high requirements of commercial production.
Keywords