Journal of Global Antimicrobial Resistance (Jun 2023)
Emergence of blaSHV-12 and qnrS1 encoded on IncX3 plasmids: Changing epidemiology of extended-spectrum ß-lactamases among Enterobacterales isolated from broilers
Abstract
ABSTRACT: Objectives: The occurrence of extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales in broilers represents a risk to public health because of the possibility of transmission of ESBL producers and/or blaESBL genes via the food chain or within settings where human-animal interfaces exist. Methods: This study assessed the occurrence of ESBL producers among faecal samples of broilers at slaughter. Isolates were characterised by multilocus sequence typing, antimicrobial susceptibility testing, and whole-genome sequencing. Results: The flock prevalence, determined by sampling crates of 100 poultry flocks, was 21%. The predominant blaESBL gene was blaSHV-12, identified in 92% of the isolates. A variety of Escherichia coli and Klebsiella pneumoniae sequence types (STs) were identified, including extraintestinal pathogenic E. coli ST38, avian pathogenic E. coli ST10, ST93, ST117, and ST155, and nosocomial outbreak clone K. pneumoniae ST20. Whole-genome sequencing was used to characterise a subset of 15 isolates, including 6 E. coli, 4 K. pneumoniae, 1 Klebsiella grimontii, 1 Klebsiella michiganensis, 1 Klebsiella variicola, and 1 Atlantibacter subterranea. Fourteen isolates carried identical or closely related 46338–54929 bp IncX3 plasmids encoding blaSHV-12 and qnrS1. One E. coli isolate carried a 46338 bp IncX3 plasmid, which was integrated chromosomally into ydbD. Conclusions: The blaSHV-12 gene has replaced the previously predominant blaCTX-M-1 in ESBL-producing Enterobacterales from broilers in Switzerland. Broilers may play a role in the dissemination of blaSHV-12 and qnrS1 associated with epidemic IncX3 plasmids, representing a risk to human and animal health.