MATEC Web of Conferences (Jan 2020)
Mobile robot positioning algorithm based on Kalman filtering method in network environment
Abstract
Positioning is the basic link in a multi-mobile robot control system, and is also a problem that must be solved before completing a specified task. The positioning method can be generally divided into relative positioning and absolute positioning. Absolute positioning method refers to that the robot calculates its current position by acquiring the reference information of some known positions in the outside world, calculating the relationship between itself and the reference information. Absolute positioning generally adopts methods based on beacons, environment map matching, and visual positioning. The relative positioning method mainly uses the inertial navigation system INS. The inertial navigation system directly fixes the inertial measurement unit composed of the gyroscope and the accelerometer to the target device, and uses the inertial devices such as the gyroscope and the accelerometer to measure the triaxial angular velocity and The three-axis acceleration information is measured and integrated, and the mobile robot coordinates are updated in real time. Combined with the initial inertial information of the target device, navigation information such as the attitude, speed, and position of the target device is obtained through integral operation [1-2]. The inertial navigation system does not depend on external information when it is working, and is not easily damaged by interference. As an autonomous navigation system, it has the advantages of high data update rate and high short-term positioning accuracy [3]. However, under the long-term operation of inertial navigation, due to the cumulative error of integration, the positioning accuracy is seriously degraded, so it is necessary to seek an external positioning method to correct its position information [4]