Revista Facultad de Ingeniería Universidad de Antioquia (Jan 2016)

On-line signature verification using Gaussian Mixture Models and small-sample learning strategies

  • Gabriel Jaime Zapata-Zapata,
  • Julián David Arias-Londoño,
  • Jesús Francisco Vargas-Bonilla,
  • Juan Rafael Orozco-Arroyave

Journal volume & issue
no. 79
pp. 84 – 97

Abstract

Read online

El artículo aborda el problema de entrenamiento de sistemas de verificación de firmas en línea cuando el número de muestras disponibles para el entrenamiento es bajo, debido a que en la mayoría de situaciones reales el número de firmas disponibles por usuario es muy limitado. El artículo evalúa nueve diferentes estrategias de clasificación basadas en modelos de mezclas de Gaussianas (GMM por sus siglas en inglés) y la estrategia conocida como modelo histórico universal (UBM por sus siglas en inglés), la cual está diseñada con el objetivo de trabajar bajo condiciones de menor número de muestras. Las estrategias de aprendizaje de los GMM incluyen el algoritmo convencional de Esperanza y Maximización, y una aproximación Bayesiana basada en aprendizaje variacional. Las firmas son caracterizadas principalmente en términos de velocidades y aceleraciones de los patrones de escritura a mano de los usuarios. Los resultados muestran que cuando se evalúa el sistema en una configuración genuino vs. impostor, el método GMM-UBM es capaz de mantener una precisión por encima del 93%, incluso en casos en los que únicamente se usa para entrenamiento el 20% de las muestras disponibles (equivalente a 5 firmas), mientras que la combinación de un modelo Bayesiano UBM con una Máquina de Soporte Vectorial (SVM por sus siglas en inglés), modelo conocido como GMM-Supervector, logra un 99% de acierto cuando las muestras de entrenamiento exceden las 20. Por otro lado, cuando se simula un ambiente real en el que no están disponibles muestras impostoras y se usa

Keywords