AIP Advances (Jan 2021)
Effect of wall boundary conditions on the nonlinear response of turbulent premixed flames
Abstract
Fully compressible Large Eddy Simulations (LES) are performed to investigate the effect of wall boundary conditions on the nonlinear response of turbulent premixed flames. For the unforced flames, the flame length and flame angle from the present LES results in the isothermal case are in better agreement with experimental results than those in the adiabatic case. For the forced flames, both amplitudes and phases of nonlinear flame response at moderate frequency are well reproduced in the isothermal case. While in the adiabatic case, the amplitudes are well reproduced, the prediction of phases is slightly underestimated. At high frequency, LES results from the isothermal case provide reasonable agreement with the experimental results in general, while the adiabatic case gives unreasonable prediction of nonlinear flame response. Results show that wall boundary conditions affect the spatial distributions of heat release fluctuations by changing the temperature field, which is affected by the evolutions of the flame structure and flow field in the nonlinear oscillation cycle. At moderate frequency, heat release fluctuations in different parts of the combustor are in phase, and wall boundary conditions have limited influence on the global flame response, while at high frequency, wall boundary conditions have significant influence on the global flame response since the heat release fluctuations in different parts of combustor are out of phase. Accurate prediction of flame response at high frequency needs accurate calculation of the wall temperature.