Interfases (Jul 2024)

UL-Keystroke: A Web-Based Keystroke Dynamics Dataset

  • Aron Lo Li,
  • Juan Gutiérrez-Cárdenas,
  • Victor H. Ayma

DOI
https://doi.org/10.26439/interfases2024.n19.7009
Journal volume & issue
no. 019
pp. 197 – 211

Abstract

Read online

Los sistemas de autenticación basados en la dinámica de teclado identifican a las personas analizando sus patrones de tecleo cuando interactúan con dispositivos de entrada, como un teclado de computadora. En los campos de Estadística y Aprendizaje Automático, existen varios estudios de investigación que han aplicado diferentes técnicas para el reconocimiento de patrones de tecleo. En este trabajo, se propuso la creación de un conjunto de datos, así como una metodología que permitiría a los usuarios capturar patrones de tecleo de estudiantes pertenecientes a una universidad en Lima, Perú, a través de un entorno en la nube y desde sus propios dispositivos. La arquitectura en la nube utilizada para la implementación y despliegue de la herramienta web será explicada en detalle. El resultado de este trabajo es un conjunto de datos con información de los participantes, registros de sus patrones de tecleo y metadatos adicionales de los navegadores web de los participantes que podrían usarse para enriquecer futuros estudios. Además, junto con los datos sin procesar capturados, se generaron algunas características de la dinámica de tecleo y se pusieron a disposición junto con el conjunto de datos para facilitar la generación de modelos de clasificación. El conjunto de datos y la metodología presentados en este artículo pueden ser utilizados por otros investigadores para mejorar los sistemas de reconocimiento de dinámica de teclado actuales.

Keywords