Nature Communications (Mar 2024)

Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding

  • Liting Zheng,
  • Kathryn E. Barry,
  • Nathaly R. Guerrero-Ramírez,
  • Dylan Craven,
  • Peter B. Reich,
  • Kris Verheyen,
  • Michael Scherer-Lorenzen,
  • Nico Eisenhauer,
  • Nadia Barsoum,
  • Jürgen Bauhus,
  • Helge Bruelheide,
  • Jeannine Cavender-Bares,
  • Jiri Dolezal,
  • Harald Auge,
  • Marina V. Fagundes,
  • Olga Ferlian,
  • Sebastian Fiedler,
  • David I. Forrester,
  • Gislene Ganade,
  • Tobias Gebauer,
  • Josephine Haase,
  • Peter Hajek,
  • Andy Hector,
  • Bruno Hérault,
  • Dirk Hölscher,
  • Kristin B. Hulvey,
  • Bambang Irawan,
  • Hervé Jactel,
  • Julia Koricheva,
  • Holger Kreft,
  • Vojtech Lanta,
  • Jan Leps,
  • Simone Mereu,
  • Christian Messier,
  • Florencia Montagnini,
  • Martin Mörsdorf,
  • Sandra Müller,
  • Bart Muys,
  • Charles A. Nock,
  • Alain Paquette,
  • William C. Parker,
  • John D. Parker,
  • John A. Parrotta,
  • Gustavo B. Paterno,
  • Michael P. Perring,
  • Daniel Piotto,
  • H. Wayne Polley,
  • Quentin Ponette,
  • Catherine Potvin,
  • Julius Quosh,
  • Boris Rewald,
  • Douglas L. Godbold,
  • Jasper van Ruijven,
  • Rachel J. Standish,
  • Artur Stefanski,
  • Leti Sundawati,
  • Jon Urgoiti,
  • Laura J. Williams,
  • Brian J. Wilsey,
  • Baiyu Yang,
  • Li Zhang,
  • Zhao Zhao,
  • Yongchuan Yang,
  • Hans Sandén,
  • Anne Ebeling,
  • Bernhard Schmid,
  • Markus Fischer,
  • Martyna M. Kotowska,
  • Cecilia Palmborg,
  • David Tilman,
  • Enrong Yan,
  • Yann Hautier

DOI
https://doi.org/10.1038/s41467-024-46355-z
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.