Molecular Genetics and Metabolism Reports (Dec 2018)

Quantification of 11 enzyme activities of lysosomal storage disorders using liquid chromatography-tandem mass spectrometry

  • Mari Ohira,
  • Torayuki Okuyama,
  • Ryuichi Mashima

Journal volume & issue
Vol. 17
pp. 9 – 15

Abstract

Read online

Astract: Lysosomal storage disorders (LSDs) are characterized by the accumulation of lipids, glycolipids, oligosaccharides, mucopolysaccharides, and other biological substances because of the pathogenic deficiency of lysosomal enzymes. Such diseases are rare; thus, a multiplex assay for these disorders is effective for the identification of affected individuals during the presymptomatic period. Previous studies have demonstrated that such assays can be performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) detection. An assay procedure to quantify the activity of 11 enzymes associated with LSDs was provided. First, a validation study was performed using dried blood spot (DBS) samples with 100% and 5% enzyme activity for quality control (QC). Under the assay condition, the analytical range, defined as the ratio of the peak area of the enzyme reaction products from the DBS for QC with 100% enzyme activity to that from the filter paper blank sample, was between 14 for GALN and 4561 for GLA. Based on these results, the distribution of the enzyme activity for the 11 LSD enzymes was further examined. Consistent with the previous data, the enzyme activity exhibited a bell-shaped distribution with a single peak. The averaged enzyme activity for the healthy neonates was as follows: GLA, 3.80 ± 1.6; GAA, 10.6 ± 4.8; IDUA, 6.4 ± 2.3; ABG, 8.6 ± 3.1; ASM, 3.3 ± 1.1; GALC, 2.8 ± 1.3; ID2S, 16.7 ± 6.1; GALN, 1.2 ± 0.5; ARSB, 17.0 ± 8.7; NAGLU, 4.6 ± 1.5; and GUSB, 46.6 ± 19.0 μmol/h/L (mean ± SD, n = 200). In contrast, the enzyme activity in disease-affected individuals was lower than the minimum enzyme activity in healthy neonates. The results demonstrate that the population of disease-affected individuals was distinguished from that of healthy individuals by the use of LC-MS/MS.