Plants (Jan 2024)

Effects of Extended Light/Dark Cycles on Solanaceae Plants

  • Tatjana G. Shibaeva,
  • Elena G. Sherudilo,
  • Elena Ikkonen,
  • Alexandra A. Rubaeva,
  • Ilya A. Levkin,
  • Alexander F. Titov

DOI
https://doi.org/10.3390/plants13020244
Journal volume & issue
Vol. 13, no. 2
p. 244

Abstract

Read online

The absence of an externally-imposed 24 h light/dark cycle in closed plant production systems allows setting the light environmental parameters in unconventional ways. Innovative lighting modes for energy-saving, high-quality, and yield production are widely discussed. This study aimed to evaluate the effects of the light/dark cycles of 16/8 h (control) and 24/12 h, 48/24 h, 96/48 h, 120/60 h (unconventional cycles) based on the same total light amount, and continuous lighting (360/0 h) on plant performance of some Solanaceae species. Responses of eggplant (Solanum melongena L.), sweet pepper (Capsicum annuum L.), tobacco (Nicotiana tabacum L.), and tomato (Solanum lycopersicum L.) plants to extended light/dark cycles and continuous lighting were studied under controlled climate conditions. Plants with two true leaves were exposed to different light/dark cycles for 15 days. Light intensity was 250 µmol m−2 s−1 PPFD, provided by light-emitting diodes (LEDs). After the experiment, tomato, sweet pepper, and eggplant transplants were planted in a greenhouse and grown under identical conditions of natural photoperiod for the estimation of the after-effect of light treatments on fruit yield. Extended light/dark cycles of 24/12 h, 48/24 h, 96/48 h, 120/60 h, and 360/0 h affected growth, development, photosynthetic pigment content, anthocyanin and flavonoid content, and redox state of plants. Effects varied with plant species and length of light/dark cycles. In some cases, measured parameters improved with increasing light/dark periods despite the same total sum of illumination received by plants. Treatments of tomato and pepper transplants with 48/24 h, 96/48 h, and 120/60 h resulted in higher fruit yield compared to conventional 16/8 h photoperiod. The conclusion was made that extended light/dark cycles can result in increased light use efficiency compared to conventional photoperiod and, therefore, reduced product cost, but for practical application, the effects need to be further explored for individual plant species or even cultivars.

Keywords