Applied Sciences (May 2022)

Calculation of a Climate Change Vulnerability Index for Nakdong Watersheds Considering Non-Point Pollution Sources

  • Jungmin Kim,
  • Heongak Kwon

DOI
https://doi.org/10.3390/app12094775
Journal volume & issue
Vol. 12, no. 9
p. 4775

Abstract

Read online

As a response to climate change, South Korea has established its third National Climate Change Adaptation Plan (2021–2025) alongside the local governments’ plans. In this study, proxy variables in 22 sub-watersheds of the Nakdong River, Korea were used to investigate climate exposure, sensitivity, adaptive capacity, and non-point pollution in sub-watersheds, a climate change vulnerability index (CCVI) was established, and the vulnerability of each sub-watershed in the Nakdong River was evaluated. Climate exposure was highest in the Nakdong Estuary sub-watershed (75.5–81.7) and lowest in the Geumhogang sub-watershed (21.1–28.1). Sensitivity was highest (55.7) in the Nakdong Miryang sub-watershed and lowest (19.6) in the Habcheon dam sub-watershed. Adaptive capacity and the resulting CCVI were highest in the Geumhogang sub-watershed (96.2 and 66.2–67.9, respectively) and lowest in the Wicheon sub-watershed (2.61 and 18.5–20.4, respectively), indicating low and high vulnerabilities to climate change, respectively. The study revealed that the high CCVI sensitivity was due to adaptive capacity. These findings can help establish rational climate change response plans for regional water resource management. To assess climate change vulnerability more accurately, regional bias can be prevented by considering various human factors, including resources, budget, and facilities.

Keywords