BMC Veterinary Research (Aug 2022)

Anti-inflammation of isoliquiritigenin via the inhibition of NF-κB and MAPK in LPS-stimulated MAC-T cells

  • Manman Li,
  • Guicong Lu,
  • Xiao Ma,
  • Ruihong Wang,
  • Xihong Chen,
  • Yongxiong Yu,
  • Caode Jiang

DOI
https://doi.org/10.1186/s12917-022-03414-1
Journal volume & issue
Vol. 18, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background The application of plant extracts has received great interest for the treatment of bovine mastitis. Isoliquiritigenin (ISL) is a rich dietary flavonoid that has significant antioxidative, anti-inflammatory and anticancer activities. This study was conducted to explore the protective efficacy and related mechanism of ISL against lipopolysaccharide (LPS)-stimulated oxidation and inflammation in bovine mammary epithelial cells (MAC-T) by in vitro experiments. Results Real-time PCR and ELISA assays indicated that ISL treatment at 2.5, 5 and 10 μg/mL significantly reduced the mRNA and protein expression of the oxidative indicators cyclooxygenase-2 and inducible nitric oxide synthase (P < 0.01), and of the inflammatory cytokines interleukin-6 (P < 0.05), interleukin-1β (P < 0.01) and tumor necrosis factor-α (P < 0.01) in LPS-stimulated MAC-T cells. Moreover, Western blotting and immunofluorescence tests indicated that the phosphorylation levels of nuclear factor kappa (NF-κB) p65 and the inhibitor of NF-κB were significantly decreased by ISL treatment, thus blocking the nuclear transfer of NF-κB p65. In addition, ISL attenuated the phosphorylation levels of p38, extracellular signal-regulated kinase and c-jun NH2 terminal kinase. Conclusions Our data demonstrated that ISL downregulated the LPS-induced inflammatory response in MAC-T cells. The anti-inflammatory and antioxidative activity of ISL involves the NF-κB and MAPK cascades.

Keywords