Materials Research (Mar 2020)
Hydrogen Effect on Zr-Nb-Mn Alloys for Nuclear Reactor Application
Abstract
Zr-Nb-Mn alloys were developed to investigate hydrogen diffusion and its effects among different manganese additions. Thermo-Calc® and TC-Prisma simulations were used to determine the studied chemical compositions and to estimate the volume fraction and the mean radius of precipitates. Three compositions were chosen to be melted and thermomechanically processed, resulting in an α-Zr matrix with fine β-Nb precipitation. TDS results indicated that hydrogen diffusion coefficient was 10-12 m2.s-1 for all the analyzed compositions. The manganese addition increased the strength while ductility was maintained. Although optical microscopy revealed that the increase of manganese content resulted in less oriented hydrides, the reduction in ductility was similar for the three studied compositions. Results showed manganese as a promising addition element for zirconium alloys due to the increase of hydrogen solubility, the good relationship between strength and ductility and the morphology of the hydrides.
Keywords