Molecules (Mar 2024)

Uncontrolled Post-Industrial Landfill—Source of Metals, Potential Toxic Compounds, Dust, and Pathogens in Environment—A Case Study

  • Justyna Szulc,
  • Małgorzata Okrasa,
  • Adriana Nowak,
  • Małgorzata Ryngajłło,
  • Joanna Nizioł,
  • Anna Kuźniar,
  • Tomasz Ruman,
  • Beata Gutarowska

DOI
https://doi.org/10.3390/molecules29071496
Journal volume & issue
Vol. 29, no. 7
p. 1496

Abstract

Read online

The aim of this case study was the evaluation of the selected metals’ concentration, potential toxic compound identification, cytotoxicity analysis, estimation of the airborne dust concentration, biodiversity, and number of microorganisms in the environment (leachate, soil, air) of the biggest uncontrolled post-industrial landfills in Poland. Based on the results obtained, preliminary solutions for the future management of post-industrial objects that have become an uncontrolled landfill were indicated. In the air, the PM1 fraction dominated, constituting 78.1–98.2% of the particulate matter. Bacterial counts were in the ranges of 9.33 × 101–3.21 × 103 CFU m−3 (air), 1.87 × 105–2.30 × 106 CFU mL−1 (leachates), and 8.33 × 104–2.69 × 106 CFU g−1 (soil). In the air, the predominant bacteria were Cellulosimicrobium and Stenotrophomonas. The predominant fungi were Mycosphaerella, Cladosporium, and Chalastospora. The main bacteria in the leachates and soils were Acinetobacter, Mortierella, Proteiniclasticum, Caloramator, and Shewanella. The main fungi in the leachates and soils were Lindtneria. Elevated concentrations of Pb, Zn, and Hg were detected. The soil showed the most pronounced cytotoxic potential, with rates of 36.55%, 63.08%, and 100% for the A-549, Caco-2, and A-549 cell lines. Nine compounds were identified which may be responsible for this cytotoxic effect, including 2,4,8-trimethylquinoline, benzo(f)quinoline, and 1-(m-tolyl)isoquinoline. The microbiome included bacteria and fungi potentially metabolizing toxic compounds and pathogenic species.

Keywords