Biology (Jul 2022)
B-Type Natriuretic Peptide (BNP) Revisited—Is BNP Still a Biomarker for Heart Failure in the Angiotensin Receptor/Neprilysin Inhibitor Era?
Abstract
Myocardial wall stress, cytokines, hormones, and ischemia all stimulate B-type (or brain) natriuretic peptide (BNP) gene expression. Within the myocardium, ProBNP-108, a BNP precursor, undergoes glycosylation, after which a portion is cleaved by furin into mature BNP-32 and N-terminal proBNP-76, depending on the glycosylation status. As a result, active BNP, less active proBNP, and inactive N-terminal proBNP all circulate in the blood. There are three major pathways for BNP clearance: (1) cellular internalization via natriuretic peptide receptor (NPR)-A and NPR-C; (2) degradation by proteases in the blood, including neprilysin, dipeptidyl-peptidase-IV, insulin degrading enzyme, etc.; and (3) excretion in the urine. Because neprilysin has lower substrate specificity for BNP than atrial natriuretic peptide (ANP), the increase in plasma BNP after angiotensin receptor neprilysin inhibitor (ARNI) administration is much smaller than the increase in plasma ANP. Currently available BNP immunoassays react with both mature BNP and proBNP. Therefore, BNP measured with an immunoassay is mature BNP + proBNP. ARNI administration increases mature BNP but not proBNP, as the latter is not degraded by neprilysin. Consequently, measured plasma BNP initially increases with ARNI administration by the amount of the increase in mature BNP. Later, ARNI reduces myocardial wall stress, and the resultant reduction in BNP production more than offsets the increase in mature BNP mediated by inhibiting degradation by neprilysin, which lowers plasma BNP levels. These results suggest that even in the ARNI era, BNP can be used for diagnosis and assessment of the pathophysiology and prognosis of heart failure, though the mild increases early during ARNI administration should be taken into consideration.
Keywords