Frontiers in Genetics (Jan 2019)
Detection of Selection Signatures Among Brazilian, Sri Lankan, and Egyptian Chicken Populations Under Different Environmental Conditions
Abstract
Extreme environmental conditions are a major challenge in livestock production. Changes in climate, particularly those that contribute to weather extremes like drought or excessive humidity, may result in reduced performance and reproduction and could compromise the animal’s immune function. Animal survival within extreme environmental conditions could be in response to natural selection and to artificial selection for production traits that over time together may leave selection signatures in the genome. The aim of this study was to identify selection signatures that may be involved in the adaptation of indigenous chickens from two different climatic regions (Sri Lanka = Tropical; Egypt = Arid) and in non-indigenous chickens that derived from human migration events to the generally tropical State of São Paulo, Brazil. To do so, analyses were conducted using fixation index (Fst) and hapFLK analyses. Chickens from Brazil (n = 156), Sri Lanka (n = 92), and Egypt (n = 96) were genotyped using the Affymetrix Axiom®600k Chicken Genotyping Array. Pairwise Fst analyses among countries did not detect major regions of divergence between chickens from Sri Lanka and Brazil, with ecotypes/breeds from Brazil appearing to be genetically related to Asian-Indian (Sri Lanka) ecotypes. However, several differences were detected in comparisons of Egyptian with either Sri Lankan or Brazilian populations, and common regions of difference on chromosomes 2, 3 and 8 were detected. The hapFLK analyses for the three separate countries suggested unique regions that are potentially under selection on chromosome 1 for all three countries, on chromosome 4 for Sri Lankan, and on chromosomes 3, 5, and 11 for the Egyptian populations. Some of identified regions under selection with hapFLK analyses contained genes such as TLR3, SOCS2, EOMES, and NFAT5 whose biological functions could provide insights in understanding adaptation mechanisms in response to arid and tropical environments.
Keywords