Water (Jun 2022)

Determination of Glufosinate-P-Ammonium in Soil Using Precolumn Derivation and Reversed-Phase High-Performance Liquid Chromatography

  • Lin Chen,
  • Shun Kong,
  • Guodong Wang,
  • Xiaoju Yan,
  • Xuemei Zhang,
  • Xiangji Kong,
  • Yuanqing Bu

DOI
https://doi.org/10.3390/w14111816
Journal volume & issue
Vol. 14, no. 11
p. 1816

Abstract

Read online

This study developed an analytical method to quantify glufosinate-P-ammonium (GLUF-P) in farmland soil using a reversed-phase high-performance liquid chromatography (HPLC) system with a fluorescence detector after derivatization. GLUF-P in farmland soil was extracted with a mixed alkaline solution and was further derivatized with 9-fluorenyl methyl chloroformate (FMOC) at 25 °C for 1 h. The derivatives were separated with an ACE-C18 column, gradient eluted with a mobile phase A of acetonitrile and a mobile phase B of 0.2% phosphoric acid solution, and finally determined by high-performance liquid chromatography (HPLC) with fluorescence detection at an excitation wavelength of 254 nm and an emission wavelength of 279.8 nm. The limits of detection (LODs) in the four types of soil ranged from 0.004 to 0.015 mg/kg, and the limits of quantification (LOQs) ranged from 0.0125 to 0.05 mg/kg. The mean recoveries of GLUF-P ranged from 94% to 119.8%, and the relative standard deviations (RSDs) varied between 2.8% and 9.0% when the spiked concentrations of GLUF-P were 0.1 mg/kg and 1.0 mg/kg, respectively. The coefficients of regression for the linearity equation were more than 0.99. The proposed method had high sensitivity and could be used for the determination of GLUF-P residues in farmland soil.

Keywords