Acta Universitatis Sapientiae: Mathematica (Dec 2019)

A new approach to the r-Whitney numbers by using combinatorial differential calculus

  • Méndez Miguel A.,
  • Ramírez José L.

DOI
https://doi.org/10.2478/ausm-2019-0029
Journal volume & issue
Vol. 11, no. 2
pp. 387 – 418

Abstract

Read online

In the present article we introduce two new combinatorial interpretations of the r-Whitney numbers of the second kind obtained from the combinatorics of the differential operators associated to the grammar G := {y → yxm, x → x}. By specializing m = 1 we obtain also a new combinatorial interpretation of the r-Stirling numbers of the second kind. Again, by specializing to the case r = 0 we introduce a new generalization of the Stirling number of the second kind and through them a binomial type family of polynomials that generalizes Touchard’s polynomials. Moreover, we recover several known identities involving the r-Dowling polynomials and the r-Whitney numbers using the combinatorial differential calculus. We construct a family of posets that generalize the classical Dowling lattices. The r-Withney numbers of the first kind are obtained as the sum of the Möbius function over elements of a given rank. Finally, we prove that the r-Dowling polynomials are a Sheffer family relative to the generalized Touchard binomial family, study their umbral inverses, and introduce [m]-Stirling numbers of the first kind. From the relation between umbral calculus and the Riordan matrices we give several new combinatorial identities

Keywords