Physical Review X (Apr 2021)

Correspondence Principle for Many-Body Scars in Ultracold Rydberg Atoms

  • C. J. Turner,
  • J.-Y. Desaules,
  • K. Bull,
  • Z. Papić

DOI
https://doi.org/10.1103/PhysRevX.11.021021
Journal volume & issue
Vol. 11, no. 2
p. 021021

Abstract

Read online Read online

The theory of quantum scarring—a remarkable violation of quantum unique ergodicity—rests on two complementary pillars: the existence of unstable classical periodic orbits and the so-called quasimodes, i.e., the nonergodic states that strongly overlap with a small number of the system’s eigenstates. Recently, interest in quantum scars has been revived in a many-body setting of Rydberg atom chains. While previous theoretical works have identified periodic orbits for such systems using time-dependent variational principle (TDVP), the link between periodic orbits and quasimodes has been missing. Here we provide a conceptually simple analytic construction of quasimodes for the nonintegrable Rydberg atom model and prove that they arise from a “requantization” of previously established periodic orbits when quantum fluctuations are restored to all orders. Our results shed light on the TDVP classical system simultaneously playing the role of both the mean-field approximation and the system’s classical limit, thus allowing us to firm up the analogy between the eigenstate scarring in the Rydberg atom chains and the single-particle quantum systems.