Molecules (Mar 2018)

Synthesis, Molecular Docking, and Antimycotic Evaluation of Some 3-Acyl Imidazo[1,2-a]pyrimidines

  • Omar Gómez-García,
  • Dulce Andrade-Pavón,
  • Elena Campos-Aldrete,
  • Ricardo Ballinas-Indilí,
  • Alfonso Méndez-Tenorio,
  • Lourdes Villa-Tanaca,
  • Cecilio Álvarez-Toledano

DOI
https://doi.org/10.3390/molecules23030599
Journal volume & issue
Vol. 23, no. 3
p. 599

Abstract

Read online

A series of 3-benzoyl imidazo[1,2-a]pyrimidines, obtained from N-heteroarylformamidines in good yields, was tested in silico and in vitro for binding and inhibition of seven Candida species (Candida albicans (ATCC 10231), Candida dubliniensis (CD36), Candida glabrata (CBS138), Candida guilliermondii (ATCC 6260), Candida kefyr, Candida krusei (ATCC 6358) and Candida tropicalis (MYA-3404)). To predict binding mode and energy, each compound was docked in the active site of the lanosterol 14α-demethylase enzyme (CYP51), essential for fungal growth of Candida species. Antimycotic activity was evaluated as the 50% minimum inhibitory concentration (MIC50) for the test compounds and two reference drugs, ketoconazole and fluconazole. All test compounds had a better binding energy (range: −6.11 to −9.43 kcal/mol) than that found for the reference drugs (range: 48.93 to −6.16 kcal/mol). In general, the test compounds showed greater inhibitory activity of yeast growth than the reference drugs. Compounds 4j and 4f were the most active, indicating an important role in biological activity for the benzene ring with electron-withdrawing substituents. These compounds show the best MIC50 against C. guilliermondii and C. glabrata, respectively. The current findings suggest that the 3-benzoyl imidazo[1,2-a]pyrimidine derivatives, herein synthesized by an accessible methodology, are potential antifungal drugs.

Keywords