Metals (May 2018)

The Aqueous Electrochemical Response of TiC–Stainless Steel Cermets

  • Chukwuma Onuoha,
  • Zhila Russell,
  • Georges Kipouros,
  • Zoheir Farhat,
  • Kevin Plucknett

DOI
https://doi.org/10.3390/met8060398
Journal volume & issue
Vol. 8, no. 6
p. 398

Abstract

Read online

A family of TiC–stainless steel ceramic–metal composites, or cermets, has been developed in the present study, using steel grades of 304 L, 316 L, or 410 L as the binder phase. Melt infiltration was used to prepare the cermets, with the steel binder contents varying between 10–30 vol. %. The corrosion behaviour was evaluated using a range of electrochemical techniques in an aqueous solution containing 3.5 wt. % NaCl. The test methods included potentiodynamic, cyclic, and potentiostatic polarisation. The corroded samples were subsequently characterised using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), while the post-corrosion solutions were analysed using inductively coupled plasma optical emission spectroscopy (ICP-OES) to determine the residual ionic and particulate material removed from the cermets during electrochemical testing. It was demonstrated that the corrosion resistance was enhanced through decreasing the steel binder content, which arises due to the preferential dissolution of the binder phase, while the TiC ceramic remains largely unaffected. Increasing corrosion resistance was observed in the sequence TiC-304 L > TiC-316 L > TiC-410 L.

Keywords