mBio (Sep 2018)
Restricted Localization of Photosynthetic Intracytoplasmic Membranes (ICMs) in Multiple Genera of Purple Nonsulfur Bacteria
Abstract
ABSTRACT In bacteria and eukaryotes alike, proper cellular physiology relies on robust subcellular organization. For the phototrophic purple nonsulfur bacteria (PNSB), this organization entails the use of a light-harvesting, membrane-bound compartment known as the intracytoplasmic membrane (ICM). Here we show that ICMs are spatially and temporally localized in diverse patterns among PNSB. We visualized ICMs in live cells of 14 PNSB species across nine genera by exploiting the natural autofluorescence of the photosynthetic pigment bacteriochlorophyll (BChl). We then quantitatively characterized ICM localization using automated computational analysis of BChl fluorescence patterns within single cells across the population. We revealed that while many PNSB elaborate ICMs along the entirety of the cell, species across as least two genera restrict ICMs to discrete, nonrandom sites near cell poles in a manner coordinated with cell growth and division. Phylogenetic and phenotypic comparisons established that ICM localization and ICM architecture are not strictly interdependent and that neither trait fully correlates with the evolutionary relatedness of the species. The natural diversity of ICM localization revealed herein has implications for both the evolution of phototrophic organisms and their light-harvesting compartments and the mechanisms underpinning spatial organization of bacterial compartments. IMPORTANCE Many bacteria organize their cellular space by constructing subcellular compartments that are arranged in specific, physiologically relevant patterns. The purple nonsulfur bacteria (PNSB) utilize a membrane-bound compartment known as the intracytoplasmic membrane (ICM) to harvest light for photosynthesis. It was previously unknown whether ICM localization within cells is systematic or irregular and if ICM localization is conserved among PNSB. Here we surveyed ICM localization in diverse PNSB and show that ICMs are spatially organized in species-specific patterns. Most strikingly, several PNSB resolutely restrict ICMs to regions near the cell poles, leaving much of the cell devoid of light-harvesting machinery. Our results demonstrate that bacteria of a common lifestyle utilize unequal portions of their intracellular space to harvest light, despite light harvesting being a process that is intuitively influenced by surface area. Our findings therefore raise fundamental questions about ICM biology and evolution.
Keywords