Majallah-i Dānishgāh-i ’Ulūm-i Pizishkī-i Shahīd Ṣadūqī Yazd (Jul 2017)

Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

  • Mohammad Hossien Salmani,
  • Mohadesah Mikaie,
  • Homa Torabizadeh,
  • Reza Rahmanian

Journal volume & issue
Vol. 25, no. 4
pp. 287 – 299

Abstract

Read online

Introduction: Because of their unique properties, magnetic nanoparticles have attracted the attention of many researchers in various fields. The stabilization enzyme on functionalized magnetic nanoparticles, with the maintenance of free protein activity and optimal stability, have been developed by various surface modification techniques. This review focused on the methods for  modification of iron magnetic nanoparticles and their application to stabilize protein. Methods: Among the published valid articles, 51 articles were selected from various scientific databases between the (2000-2016) years. The papers were evaluated for biological, physical and chemical synthesis methods, advantages and limitations of synthesis methods, application of surface modification and enzyme fixation on iron oxide nanoparticles. Precisely analyzing of papers, the most suitable method was investigated for the synthesis of nanoparticles and the use of nanoparticles was summarized in the biomolecules fixation process. Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

Keywords