AIP Advances (Jun 2017)
Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire
Abstract
This work is concerned with the derivation of the Green’s function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green’s function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green’s function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function). The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ(x)-potential profile. This retarded Green’s function for propagation directly along the wire is determined exactly in terms of the corresponding Green’s function for the system without the δ(x)-potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green’s function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.