Land (Sep 2022)

Impact of Long-Term Conservation Agriculture Practices on Phosphorus Dynamics under Maize-Based Cropping Systems in a Sub-Tropical Soil

  • Ajin S. Anil,
  • Vinod K. Sharma,
  • Raimundo Jiménez-Ballesta,
  • Chittar M. Parihar,
  • Siba P. Datta,
  • Mandira Barman,
  • Kapil A. Chobhe,
  • Chiranjeev Kumawat,
  • Abhik Patra,
  • Surendra Singh Jatav

DOI
https://doi.org/10.3390/land11091488
Journal volume & issue
Vol. 11, no. 9
p. 1488

Abstract

Read online

Over the past decade, scientific studies have increasingly concentrated on the effects of global phosphorus (P) scarcity on food security. A comprehensive strategy that considers demand reduction and recycling possibilities is needed to address the global P scarcity. Reduced tillage along with crop residue retention could decrease fixation of P in soil, improve labile P content and enhance organic-P (Po) buildup and its mineralization by phosphatases; this could be an extra benefit of conservation agriculture (CA) in soils. To study the impact of long-term CA on soil organic and inorganic P fractions and their distribution, a long-term field trial was conducted under a maize-based cropping system with different tillage (zero tillage (ZT), permanent bed (PB) and conventional till (CT) and cropping system (maize–wheat–mungbean (MWMb), maize–chickpea–sesbania (MCS), maize–mustard–mungbean (MMuMb) and maize–maize–sesbania (MMS)). Phosphorus dynamics were studied through sequential fractionation (organic and inorganic P) at 0–5 and 5–15 cm soil depth. The findings showed that a higher amount of soluble and loosely bound P (SL-P) was detected in ZT among the inorganic P fractions, whereas iron-bound P (Fe-P), aluminum-bound P (Al-P), reductant soluble P (RES-P) and calcium-bound P (Ca-P) were found higher in CT in both soil depths. Among Organic-P fractions, moderately labile and non-labile Po was found higher in PB and ZT but, in the case of labile Po, it was found insignificant with respect to tillage operations. Significant synergistic effects of winter legume (chickpea) with summer legumes (sesbania and mungbean) in crop rotation were observed on SL-P, Labile Po, Humic acid-Po, Alkaline phosphatase and MBP at 0–5 and 5–15 cm soil depths. Given the potential relevance of understanding P dynamics for efficient P management in long-term conservation agriculture practices, our findings offers critical new insight for the P management for sustainable development.

Keywords