PLoS Pathogens (Apr 2020)

PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease.

  • Subhadip Choudhuri,
  • Nisha Jain Garg

DOI
https://doi.org/10.1371/journal.ppat.1008474
Journal volume & issue
Vol. 16, no. 4
p. e1008474

Abstract

Read online

Trypanosoma cruzi (T. cruzi) is the etiological agent of Chagas cardiomyopathy. In the present study, we investigated the role of extracellular vesicles (Ev) in shaping the macrophage (Mφ) response in progressive Chagas disease (CD). We purified T. cruzi Ev (TcEv) from axenic parasite cultures, and T. cruzi-induced Ev (TEv) from the supernatants of infected cells and plasma of acutely and chronically infected wild-type and Parp1-/- mice. Cultured (Raw 264.7) and bone-marrow Mφ responded to TcEV and TEv with a profound increase in the expression and release of TNF-α, IL-6, and IL-1β cytokines. TEv produced by both immune (Mφ) and non-immune (muscle) cells were proinflammatory. Chemical inhibition or genetic deletion of PARP1 (a DNA repair enzyme) significantly depressed the TEv-induced transcriptional and translational activation of proinflammatory Mφ response. Oxidized DNA encapsulated by TEv was necessary for PARP1-dependent proinflammatory Mφ response. Inhibition studies suggested that DNA-sensing innate immune receptors (cGAS>>TLR9) synergized with PARP1 in signaling the NFκB activation, and inhibition of PARP1 and cGAS resulted in >80% inhibition of TEv-induced NFκB activity. Histochemical studies showed intense inflammatory infiltrate associated with profound increase in CD11b+CD68+TNF-α+ Mφ in the myocardium of CD wild-type mice. In comparison, chronically infected Parp1-/- mice exhibited low-to-moderate tissue inflammation, >80% decline in myocardial infiltration of TNF-α+ Mφ, and no change in immunoregulatory IL-10+ Mφ. We conclude that oxidized DNA released with TEv signal the PARP1-cGAS-NF-κB pathway of proinflammatory Mφ activation and worsens the chronic inflammatory pathology in CD. Small molecule antagonists of PARP1-cGAS signaling pathway would potentially be useful in reprogramming the Mφ activation and controlling the chronic inflammation in CD.