Anais da Academia Brasileira de Ciências (Apr 2024)
Antifungal chemosensitization through induction of oxidative stress: A model for control of candidiasis based on the Lippia origanoides essential oil
Abstract
Abstract In this work, evaluated the antifungal chemosensitizing effect of the Lippia origanoides essential oil (EO) through the induction of oxidative stress. The EO was obtained by hydrodistillation and analyzed by GC-MS. To evaluate the antifungal chemosensitizing effect through induction of oxidative stress, cultures of the model yeast Saccharomyces cerevisiae ∆ycf1 were exposed to sub-inhibitory concentrations of the EO, and the expression of genes known, due be overexpressed in response to oxidative and mutagenic stress was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) method. Carvacrol and thymol were identified as the main components. The EO was effective in preventing or reducing the growth of the microorganisms tested. The gene expression profiles showed that EO promoted changes in the patterns of expression of genes involved in oxidative and mutagenic stress resistance. The combined use of the L. origanoides EO with fluconazole has been tested on Candida yeasts and the strategy resulted in a synergistic enhancement of the antifungal action of the azolic chemical product. Indeed, in association with EO, the fluconazole MICs dropped. Thus, the combinatorial use of L. origanoides EO as a chemosensitizer agent should contribute to enhancing the efficiency of conventional antifungal drugs, reducing their negative side effects.
Keywords