PLoS ONE (Jun 2010)

Flexible kernel memory.

  • Dimitri Nowicki,
  • Hava Siegelmann

DOI
https://doi.org/10.1371/journal.pone.0010955
Journal volume & issue
Vol. 5, no. 6
p. e10955

Abstract

Read online

This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors can be added, deleted, and updated on-line simply, without harming existing memories, and the number of attractors is independent of input dimension. Input vectors do not have to adhere to a fixed or bounded dimensionality; they can increase and decrease it without relearning previous memories. A memory consolidation process enables the network to generalize concepts and form clusters of input data, which outperforms many unsupervised clustering techniques; this process is demonstrated on handwritten digits from MNIST. Another process, reminiscent of memory reconsolidation is introduced, in which existing memories are refreshed and tuned with new inputs; this process is demonstrated on series of morphed faces.