International Journal of Ophthalmology (May 2022)

Hyperosmolarity disrupts tight junction via TNF-α/MMP pathway in primary human corneal epithelial cells

  • Yun Zhang,
  • Ming Yang,
  • Shi-Xin Zhao,
  • Li Nie,
  • Li-Jun Shen,
  • Wei Han

DOI
https://doi.org/10.18240/ijo.2022.05.01
Journal volume & issue
Vol. 15, no. 5
pp. 683 – 689

Abstract

Read online

AIM: To investigate the mechanism of the tight junction (TJ) disruption and the association between tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMPs) under hyperosmotic condition in primary human corneal epithelial cells (HCECs). METHODS: The cultured HCECs were exposed to media which adding sodium chloride (NaCl) for hyperosmolar stress or adding rh-TNF-α (10 ng/mL). NF-κB inhibitor (5 μmol/L) or GM-6001 (potent and broad spectrum MMP inhibitor, 20 μmol/L) was added 1h before that treatment. The integrity of TJ proteins was determined by immunofluorescent (IF) staining. The mRNA levels of TNF-α and MMPs were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and the protein expression by enzyme-linked immunosorbent assay (ELISA). RESULTS: TJ proteins ZO-1 and Occludin were disrupted in primary HCECs exposed to hyperosmotic medium. The mRNA expression and protein production of TNF-α increased significantly in hyperosmotic media at 500 mOsM. TNF-α mediated the expression and production of MMP-1, MMP-13, MMP-9, and MMP-3 stimulated by hyperosmotic stress. The production of MMPs in hyperosmolar media were increased through the increase of TNF-α. GM-6001 prevent the destruction of ZO-1 and Occludin in hyperosmolar stress and rh-TNF-α treated medium. TNF-α induced activation of MMPs was involved in the TJ disruption by hyperosmolarity. CONCLUSION: TJ proteins ZO-1 and Occludin are disrupted by hyperosmolar stress and TNF-α, but protected by MMP inhibitor (GM-6001). It suggests that TNF-α/MMP pathway mediates the TJ disruption in primary HCECs exposed to hyperosmotic stress.

Keywords