Acta Limnologica Brasiliensia (Jun 2021)
Growth dynamic on a co-cultivation of two Chlorophyta microalgae exposed to copper
Abstract
Abstract: Aim Copper is an essential nutrient for the phytoplankton, but it can also act as a toxic agent, depending on its concentration. Considering the continuous increase of this metal in the natural aquatic ecosystems, understanding its actions in co-cultivation scenarios is of great relevance. Experiments with the combination of different species resemble more accurately the natural conditions, in contrast of results obtained in single-species tests, which cannot be directly used to describe observed effects on the environment. Methods Therefore, growth parameters were investigated and compared on the co-cultivation of Chlorella sorokiniana and Kirchneriella obesa and their separate cultures exposed to three different free copper concentrations (control 6x10-9, intermediate 2x10-7 and high 1.5x10-6 mol.L-1 Cu2+). Results C. sorokiniana registered more cells in the control of the unialgal culture while K. obesa had higher cell density in the control of the co-cultivation. Growth rates decreased with the increment of copper in the unialgal conditions. However, both species maintained a high growth rate in the co-cultivation intermediate copper concentrations. Biovolume varied despite the cultivation method, being strongly related to the metal’s concentration. The maximum photosynthetic efficiency decreased in higher copper. Conclusions According to the results observed, no competitive exclusion occurred and both species were affected by copper in unialgal and co-cultivation conditions, with K. obesa being favored by the co-cultivation, which seems to have an attenuation effect on copper toxicity until intermediate concentrations. Ecologically, the results suggest that communities deal better with the toxic effects caused by intermediate copper concentrations than single-species cultures.
Keywords