Earth and Space Science (Sep 2024)
Near Real‐Time In Situ Monitoring of Nearshore Ocean Currents Using Distributed Acoustic Sensing on Submarine Fiber‐Optic Cable
Abstract
Abstract In the nearshore area, ocean current display intricate complexities due to interactions among tide, river, and coastline, which makes accurate current modeling challenging. Continuous in situ observation with high spatial and temporal resolution helps to better understand the dynamics of these currents. In this study, we used a 10‐km long submarine fiber‐optic cable with distributed acoustic sensing technology to record seismic signals associated with ocean waves. The current velocity and water depth were obtained from the velocity dispersion using frequency‐wave number analysis matched against theoretical ocean wave propagation equations. The results show remarkable agreement with observation of a nearby current meter, confirming the dominance of tidal currents as well as a small‐scale residual current. The temporal variation of water depth is consistent with observation by a nearby tidal gauge. This study demonstrates the potential of using submarine fiber‐optic cable for long‐term, high‐resolution, near real‐time nearshore current monitoring.
Keywords