Forests (Nov 2022)

Responses of Rhizosphere Soil Chemical Properties and Bacterial Community Structure to Major Afforestation Tree Species in Xiong’an New Area

  • Kefan Wang,
  • Zhenlu Qiu,
  • Mei Zhang,
  • Xueying Li,
  • Xin Fang,
  • Mingyuan Zhao,
  • Fuchen Shi

DOI
https://doi.org/10.3390/f13111822
Journal volume & issue
Vol. 13, no. 11
p. 1822

Abstract

Read online

To explore the response of rhizosphere chemical and biological properties to eight major afforestation species in Xiong’an New Area, we measured rhizosphere soil properties in their pure stands and analyzed the bacterial community structure using a high-throughput sequencing platform. The results showed that: (1) Compared with coniferous species, broadleaved species had higher total nutrient concentration and pH in the rhizosphere but lower available nutrient concentration and soil moisture. Nitrate nitrogen deficiency was found in all stands. (2) Uncultured_bacterium_f_Longimicrobiaceae and RB41 could distinguish Platycladus orientalis (Linn.) Franco from other trees. Compared with other tree species, Sabina chinensis (Linn.) Ant., Armeniaca vulgaris Lam., and Fraxinus chinensis Roxb. gathered more Actinobacteria, Planctomycetes, and Gemmatimonadetes, respectively. Uncultured_bacterium_o_Rokubacteriales, uncultured_bacterium_f_Gemmatimonadaceae, and uncultured_bacterium_c_Subgroup_6 were major contributors to the differences in bacterial communities among most tree species. (3) Species characteristics changed soil chemical properties, further affecting the bacterial community. Total carbon, organic matter, total nitrogen, and pH were the main factors explaining these variations. In general, Sophora japonica Linn. and F. chinensis could increase soil total nutrient significantly, which meant that they were more suitable for afforestation in the studied area than the other species. P. orientalis and Pinus tabuliformis Carr. were better choices among conifers. We suggest planting more mixed forests to improve the rhizosphere nutrient status of conifers. A suitable way to alleviate prevailing nitrogen and phosphorus limitations is also required, such as introducing understory vegetation or supplementing organic fertilizers.

Keywords